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Effect of vertical grid variability on a free surface flow model§
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SUMMARY

A previously developed numerical model that solves the incompressible, non-hydrostatic, Navier–Stokes
equations for free surface flow is analysed on a non-uniform vertical grid. The equations are vertically
transformed to the �-coordinate system and solved in a fractional step manner in which the pressure is
computed implicitly by correcting the hydrostatic flow field to be divergence free. Numerical consistency,
accuracy and efficiency are assessed with analytical methods and numerical experiments for a varying
vertical grid discretization. Specific discretizations are proposed that attain greater accuracy and minimize
computational effort when compared to a uniform vertical discretization. Published in 2007 by John Wiley
& Sons, Ltd.
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INTRODUCTION

The accurate simulation of currents and wave transformation in shallow water is needed for the
reliable design of coastal structures and prediction of sediment transport and subsequent bot-
tom evolution. Models based on the incompressible Navier–Stokes equations have been shown
to realistically simulate surf zone dynamics because of minimal simplifying assumptions in their
physics [1, 2]. These models use the marker-and-cell (MAC) method [3] or the volume-of-fluid
(VOF) method [4] for free surface tracking, which are computationally intensive but yield ac-
curate simulations of complex-free surfaces that include plunging and splashing. The MAC and
VOF methods track the free surface by monitoring the movement of water in and out of station-
ary, Cartesian, computational cells. This Eulerian approach resolves shallow and deep regions to
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the same degree and makes the application of free surface boundary conditions (BCs) difficult.
In addition, many cells may be unused above the free surface, as well as below the bottom for
domains with variable bathymetry.

Several other models have instead transformed the Navier–Stokes equations into the �-coordinate
system in which the top of the grid follows the free surface and the bottom of the grid
follows the bathymetry [5]. Mahadevan et al. [6], Lin and Li [7], and Bradford [8] vertically
integrated the incompressibility constraint to derive an equation for the surface position, while
Li and Fleming [9] directly used the kinematic free surface BC. These Lagrangian approaches
require fewer computational cells in the vertical direction than the MAC and VOF methods, and
do not require the complicated reconstruction of the free surface. These factors yield a more
computationally efficient model that makes large-scale coastal simulations more feasible, but at
the expense of simulating discontinuous free surfaces.

Some researchers have also used a non-uniform vertical grid discretization to further reduce
computational expense. The grid may be locally refined near the bed or the free surface to better
resolve strong solution gradients, which reduces the truncation error with fewer computational
cells than would otherwise be required when using a uniform grid. However, using a non-uniform
grid can have undesirable consequences. MacCracken and Bornstein [10] discuss the implications
of using a non-uniform, staggered grid with the donor-cell method. Brown and Pandolfo [11]
analysed the implicit, centred finite difference method applied to the linear advection equation and
found that refining the grid in the flow direction can introduce numerical instability. Thompson
and Mastin [12] demonstrated that the grid point distribution must be carefully chosen to preserve
numerical accuracy when discretizing derivatives on non-uniform grids. Yin and Fung [13], Marti
et al. [14] and Treguier et al. [15] showed that using a constant grid stretching (the ratio of adjacent
grid spacings is constant) reduces the accuracy of ocean circulation models.

In this paper, the model developed by Bradford [8] is analysed when using a non-uniform
vertical grid. This model was previously analysed on a uniform grid by Bradford [16]. The effects
of using a non-uniform vertical grid on the model’s consistency, stability, accuracy, and efficiency
are demonstrated and discussed. Specific vertical discretizations are proposed that increase model
accuracy, as well as reduce computational expense.

GOVERNING EQUATIONS

The model of interest solves the incompressible, Reynolds averaged, Navier–Stokes equations for
small-scale flows in which the Earth’s rotation and buoyancy effects are negligible. The governing
equations are transformed vertically from z space to � space via the following transformation:

� = z − h

D
(1)

where h is the free surface location and D is the total water depth. Furthermore, the equations
are transformed from x and y space via a curvilinear transformation to � and � space such that
the grid size in each of the � and � directions is one. In this coordinate system, the governing
equations are

�U
�t

+ 1

J

(
�(F − Fv)

��
+ �(G − Gv)

��

)
+ �(H − Hv)

��
= Sh + Sp (2)
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EFFECT OF VERTICAL GRID VARIABILITY 1175

where U= (D Du Dv Dw)T, and u, v, and w are the Cartesian velocity components. J is the
projected area of a computational cell in x–y space, and F, G, and H denote the advective fluxes
and hydrostatic pressure terms, which are defined as

F=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

DU

DUu + 1
2gD

2 J�x

DUv + 1
2gD

2 J�y

DUw

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, G=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

DV

DVu + 1
2gD

2 J�x

DV v + 1
2gD

2 J�y

DVw

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, H=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

W

Wu

Wv

Ww

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3)

where g represents gravity and

U = (u�x + v�y)J

V = (u�x + v�y)J

W = D(�t + u�x + v�y) + w =W + D�t

(4)

The terms �x , �y , �x , �y , �t , �x and �y are the grid transformation metrics. Fv,Gv andHv represent
viscous effects

Fv =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

�DJ

(
�u
��

l�� + �u
��

l�� + �u
��

l��

)

�DJ

(
�v

��
l�� + �v

��
l�� + �v

��
l��

)

�DJ

(
�w

��
l�� + �w

��
l�� + �w

��
l��

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

Gv =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

�DJ

(
�u
��

l�� + �u
��

l�� + �u
��

l��

)

�DJ

(
�v

��
l�� + �v

��
l�� + �v

��
l��

)

�DJ

(
�w

��
l�� + �w

��
l�� + �w

��
l��

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6)
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1176 S. F. BRADFORD

Hv =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

�D

(
�u
��

l�� + �u
��

l�� + �u
��

l��

)

�D

(
�v

��
l�� + �v

��
l�� + �v

��
l��

)

�D

(
�w

��
l�� + �w

��
l�� + �w

��
l��

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

� is the eddy viscosity and

l�� = �2x + �2y, l�� = �x�x + �y�y, l�� = �2x + �2y

l�� = �x�x + �y�y, l�� = �x�x + �y�y

(8)

Sh contains the source terms associated with a sloping bottom, while Sp contains the non-
hydrostatic pressure terms

Sh =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

−gDJ

(
�zb
��

�x + �zb
��

�x

)

−gDJ

(
�zb
��

�y + �zb
��

�y

)

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Sp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

−D

(
�p
��

�x + �p
��

�x + �p
��

�x

)

−D

(
�p
��

�y + �p
��

�y + �p
��

�y

)

−�p
��

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)

where zb the bottom elevation and p is the non-hydrostatic pressure component.

SOLUTION PROCEDURE

The finite volume method is used to discretize Equation (2) in which the domain is divided
into hexagonal computational cells indexed with j, k, l where �, � and � are in the direction of
contiguous j , k and l indices, respectively. The dependent variables are defined as cell-average
values and the computation is broken up in a fractional step manner in which D, u, v and w are
computed under the assumption of hydrostatic flow (Sp = 0) as described in [8].

The final step in the solution process is to correct the hydrostatic flow field by including Sp.
Momentum equations for the final velocities may be written as

u = ũ − �t

(
�x

�p
��

+ �x
�p
��

+ �x
�p
��

)
(10)

v = ṽ − �t

(
�y

�p
��

+ �y
�p
��

+ �y
�p
��

)
(11)

w = w̃ − �t

D

�p
��

(12)
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EFFECT OF VERTICAL GRID VARIABILITY 1177

where ũ, ṽ and w̃ denote the hydrostatic velocities and �t is the time step. The final velocities are
required to satisfy the discrete incompressibility constraint, which can be written as

1

J
{Uj+1/2,k,l −Uj−1/2,k,l + Vj,k+1/2,l − Vj,k−1/2,l} + W j,k,l+1/2 − W j,k,l−1/2

��l
= 0 (13)

This is accomplished by discretizing Equations (10)–(12) at each cell face and substituting into
Equation (13), which yields the following Poisson equation for p j,k,l :

a1 p j−1,k,l−1 + a2 p j,k−1,l−1 + a3 p j,k,l−1 + a4 p j,k+1,l−1 + a5 p j+1,k,l−1

+ a6 p j−1,k−1,l + a7 p j−1,k,l + a8 p j−1,k+1,l + a9 p j,k−1,l + a10 p j,k,l

+ a11 p j,k+1,l + a12 p j+1,k−1,l + a13 p j+1,k,l + a14 p j+1,k+1,l + a15 p j−1,k,l+1

+ a16 p j,k−1,l+1 + a17 p j,k,l+1 + a18 p j,k+1,l+1 + a19 p j+1,k,l+1 = R j,k,l (14)

The a coefficients are given in Appendix A and the right side is

R j,k,l = −1

J�t
(Ũ j+1/2,k,l − Ũ j−1/2,k,l + Ṽ j,k+1/2,l − Ṽ j,k−1/2,l)

+ W̃ j,k,l+1/2 − W̃ j,k,l−1/2

�t��l
(15)

Assembly of Equation (14) over the entire domain yields a system of equations of the form

Ap=R (16)

where A is an N × N matrix consisting of the a coefficients and N is the number of cells in the
computational domain. p and R are the vectors of p and R, respectively. Once Equation (16) is
solved for p, Equations (10)–(12) can be solved for the final non-hydrostatic velocities.

Boundary conditions (BCs) are applied by defining fictitious ‘ghost’ cells at all grid boundaries,
which are adjacent to the boundary but outside the computational domain. At all lateral and bottom
boundaries, a Neumann BC is used in which a zero gradient (normal to the boundary) of p is
specified. At the free surface, two BC choices are possible. The first is the Dirichlet type with
p= 0 in the ghost cell. The second is the Neumann type in which p is set in the ghost cell to
yield p= 0 at the free surface. Both of these choices are discussed later.

NUMERICAL CONSISTENCY, STABILITY, AND ACCURACY

The proposed method on a non-uniform grid is first analysed by applying it to solve the linearized,
1D, advection–diffusion equation for an arbitrary scalar, c

ct + ucx − �cxx = 0 (17)

where the subscripts t and x denote differentiation in time and space, respectively. The flow velocity,
u, and diffusion coefficient, �, are assumed to be constant. Advection is explicitly integrated in
time with a predictor corrector approach, and diffusion is implicitly integrated with the Crank–
Nicholson method. This method was analysed on a uniform grid by Bradford [16]. Note that
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1178 S. F. BRADFORD

in the 3D model, only vertical diffusion is treated implicitly, while lateral diffusion is explicitly
integrated.

The model uses a slope limiter to improve spatial accuracy without introducing numerical
oscillations near solution discontinuities. Since limiters use a computational stencil that varies in
space and time, schemes that utilize them are non-linear even when applied to the linear advection–
diffusion equation. This complicates the numerical analysis, but the Double Minmod limiter is
closely related to the linear Fromm method, which was found to possess excellent phase accuracy
by Bradford [16]. Therefore the analysis presented here is done for the Fromm method, which
provides insight into the behaviour of the proposed model that uses the Double Minmod limiter.

For u>0, the advective flux at the j + 1/2 face is computed in an upwind manner as

uc= u

(
c j + �c j

2
(1 − C j )

)
(18)

An analogous expression can be written for the j−1/2 face. The termC j = u�t/�x j is the Courant
number, �x j is the length of cell j and �c j is a cell average gradient of c that is computed with
a centred difference as

�c j =
[
�x j−1/2(c j+1 − c j )

�x j+1/2
+ �x j+1/2(c j − c j−1)

�x j−1/2

]
�x j

�x j+1/2 + �x j−1/2
(19)

where �x j+1/2 = x j+1 − x j and �x j−1/2 = x j − x j−1.
The diffusive flux across the j + 1/2 face is computed as

�cx = �
c j+1 − c j
�x j+1/2

(20)

Differencing the diffusive fluxes at the j + 1/2 and j − 1/2 faces yields an approximation to �cxx
in cell j as

�cxx = �

�x j

(
c j+1 − c j
�x j+1/2

− c j − c j−1

�x j−1/2

)
(21)

On a uniform grid, Equation (21) is O(�x2) accurate, but on a non-uniform grid it is not since the
cx approximation in Equation (20) is no longer space-centred around the cell face and therefore
not O(�x2) accurate either.

The final form of the proposed method on a non-uniform grid as applied to Equation (17) is
represented as

A1c
n+1
j+1 + A2c

n+1
j + A3c

n+1
j−1 = A4c

n
j+1 + A5c

n
j + A6c

n
j−1 + A7c

n
j−2 (22)

where n denotes the time level and the A coefficients are given in Appendix B.
Taylor series in time and space can be substituted into Equation (22) to yield the following

equivalent differential equation:

ct + ucx − �
�x j+1 + 2�x j + �x j−1

4�x j
cxx

= u(�x j − �x j−1)

4

{
1

2

(
�x j−1

�x j
+ 1

)
− C j

}
cxx + T (23)
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EFFECT OF VERTICAL GRID VARIABILITY 1179

where T represents the remaining terms in the Taylor series, the first of which is proportional to
cxxx . This is the equation that the model solves exactly, but it is difficult to analyse without further
knowledge of the grid variability.

Thompson and Mastin [12] introduced a grid point distribution function of the form

x(s)= f (s) (24)

where s is a uniform grid with 0�s�1 and �s = 1/N (N is the number of cells). x may be expanded
in a Taylor series in terms of f , which can then be used to rewrite the �x’s in Equation (23)
yielding

ct + ucx − �

(
1 + fsss

4N 2 fs

)
cxx = u fss

4N 2

(
1 − C j − fss

2N fs

)
cxx + T (25)

The order of accuracy of a model on a non-uniform grid is ambiguous and Thompson and
Mastin [12] defined it in two ways. The first definition is based on the behaviour of the truncation
error as the number of cells is increased, while maintaining a fixed f (s). The second definition
is the behaviour of the error with a fixed the number of cells, but a varying f (s). The latter
definition is really a measure of local error since changing the distribution reduces the error where
the cell size is reduced, and increases the error where the cell size is increased. The first definition
measures global error, and a second-order accurate method on a non-uniform grid is defined as
having a truncation error proportional to N−2. Equation (25) shows that the method is consistent
and second-order accurate if fsss/ fs , fss and fss/ fs remain bounded as N →∞. Furthermore,
fsss/ fs, fss>0 and fss/ fs<0 introduces numerical diffusion, while the opposite introduces anti-
diffusion and possible numerical instability.

Yin and Fung [13] chose to use a constant grid stretching in which the ratio of adjacent grid
spacings is constant. In terms of f this is expressed as

f (s) = S
1 − r Ns

1 − r N
(26)

where S is the length of the domain and r is the constant rate of grid stretch. Using r<1 refines the
grid in the flow direction, while using r>1 coarsens the grid. However, Marti et al. [14] and Treguier
et al. [15] have shown this to be a poor choice since fs(0) = 0, and therefore fsss/ fs →−∞, which
introduces numerical instability. For s>0, fsss/ fs and fss become proportional to N 2 and therefore
numerical consistency and second-order accuracy are lost.

Thompson and Mastin [12] recommended the hyperbolic sine function for applications that
require very small grid spacing, i.e. near solid boundaries when simulating turbulent boundary
layers. For coarsening the grid in the flow direction this function is defined as

f (s) = S
sinh (rs)

sinh r
(27)

where the larger the value of r , the greater the stretching. Refining the grid in the flow direction
is accomplished by choosing

f (s) = S

(
1 + sinh [r(s − 1)]

sinh r

)
(28)

In either case, fsss/ fs = r2, which adds numerical dissipation and therefore does not create
numerical instability. Incidentally, this term is a result of the approximation of Equation (21)

Published in 2007 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:1173–1199
DOI: 10.1002/fld



1180 S. F. BRADFORD

and increases with increasing r . Coarsening the grid in the flow direction yields fss/ fs>0, which
can introduce instability. This term is maximized at s = 1, i.e. where the grid spacing is largest.
This is also where fss is maximized and in this case with r>0 Equation (25) becomes

ct + ucx − �

(
1 + r2

4N 2

)
cxx = ur2

2N 2

(
1 − C j − r

2N

)
cxx + T (29)

In order to prevent numerical instability, the term multiplied by cxx on the right side of Equation
(29) must remain positive in the worst case with � = 0, which requires

r�2N (1 − Cmin) = 2N

(
1 − Cmax

�xmin

�xmax

)
(30)

Note that Cmax and Cmin are the maximum and minimum C j in the domain, while �xmax and
�xmin are the maximum and minimum grid spacings. As r and N increases, �xmin/�xmax becomes
smaller and Equation (30) becomes

r<2N (31)

Refining the grid in the flow direction yields nearly the same result except for the sign change
of the fss/ fs term. This term, along with the fss term, are maximized at s = 0 (once again at the
location of greatest grid spacing.) In this case, Equation (25) becomes

ct + ucx − �

(
1 + r2

4N 2

)
cxx = ur2

2N 2

(
1 − C j + r

2N

)
cxx + T (32)

In this case, the stability constraint reverts back to the uniform grid Courant condition (Cmax�1).
However, Equation (31) should be obeyed in order to minimize numerical dissipation.

A Von Neumann analysis of this method is not strictly valid on a non-uniform grid. However,
Brown and Pandolfo [11] demonstrated that such an analysis can provide insight into the model’s
behaviour. This is accomplished by inserting into Equation (22) the solution for a single harmonic
of the form

cnj = gneI ki x j (33)

where I = √−1 and ki is the wave number of the i th harmonic. This yields the following expression
for the amplification factor, G = gn+1/gn:

G = AG + BG I (34)

where

AG = AC + BD

C2 + D2

BG = BC − AD

C2 + D2

(35)
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and

A =C5 + C4 cos ki�x j+1/2 + C6 cos ki�x j−1/2 + C7 cos ki (�x j−1/2 + �x j−3/2)

B =C4 sin ki�x j+1/2 − C6 sin ki�x j−1/2 − C7 sin ki (�x j−1/2 + �x j−3/2)

C =C2 + C1 cos ki�x j+1/2 + C3 cos ki�x j−1/2

D =C1 sin ki�x j+1/2 − C3 sin ki�x j−1/2

(36)

where the C coefficients are defined by Equation (B1) in Appendix B.
For numerical stability, |G|�1 must be true for all possible values of ki , which is defined as

ki = i�/S, i = 0 to N . Numerical evaluation of Equation (34) indicates that |G| is maximized when
� = 0 and maintaining stability requires that

Cmax�1 (37)

The relative amplitude is defined as the ratio of the numerical to the exact solution
amplitudes, i.e.

�a = |G|
e−��tk2i

(38)

while the relative phase is similarly defined as the ratio of the numerical and exact phases

�p = tan−1 (BG/AG)

−u�tki
(39)

Figure 1 compares �a with Cmax = 0.9 and � = 0, as a function of 2N/ i , which can be interpreted
as the number of cells per wave length. In the non-uniform cases, r = 2 and the grid is coarsened

Figure 1. Relative amplitude, �a, with Cmax = 0.9 and � = 0.
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1182 S. F. BRADFORD

Figure 2. Relative phase, �p, with Cmax = 0.9 and � = 0.

and refined in the flow direction. The uniform grid case is also plotted and shows that refining
the grid in the flow direction slightly increases dissipation for 2N/ i = 3–20, which confirms the
previous result given by Equation (32). Coarsening the grid is more dissipative only for 2N/ i<4
and is very slightly less dissipative for greater values of 2N/ i . Figure 2 shows the corresponding
�p and reveals little difference except for the smallest 2N/ i<3. Similar results were obtained for
�>0 and are therefore not presented.

NUMERICAL EFFICIENCY

The computational effort for the hydrostatic portion of the model does not vary significantly
with vertical grid variability. However, the solution of Equation (16) contributes a significant
amount to the overall computational effort of the non-hydrostatic model. The biconjugate gradient
(BCG) method is an attractive method for solving large, sparse systems of linear equations such
as Equation (16) because the method only requires vector–matrix multiplications [17, 18]. For
symmetric, positive definite matrices, the BCG method is equivalent to the conjugate gradient
(CG) method. A symmetric, positive definite matrix is weakly diagonally dominant and therefore
does not require pivoting when using a direct method to invert it [19]. The CG method converges
at the rate given by [20]

Ei

E0
�2

(√
� − 1√
� + 1

)i

(40)

where i is the iteration number and the error E is defined as

Ei =
√

(p − pi )TA(p − pi ) (41)
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and the zero subscript denotes the initial guess of the solution. The condition number is defi-
ned as

� =‖A‖‖A−1‖ (42)

and for real matrices

‖A‖=
√

�max(ATA) (43)

where �max(ATA) is the largest eigenvalue of ATA. If A is symmetric, � becomes

�= �max(A)

�min(A)
(44)

where �min denotes the smallest eigenvalue. Equation (40) indicates that an A with � � 1 is
ill-conditioned and will require more iterations to converge to a desired accuracy.

For typical large-scale problems, the a coefficients in Equation (16) associated with vertical
gradients are much larger than the a’s associated with lateral gradients. Therefore, insight into the
computational efficiency of the model can be gained by considering a 1D problem with uniform
flow in the x and y directions and constant D and h. Equation (14) reduces to the following
form:

− 1

��l��l−1/2
pl−1 +

(
1

��l��l−1/2
+ 1

��l��l+1/2

)
pl − 1

��l��l+1/2
pl+1 = DRl (45)

If the discretization is uniform, �� = 1/n� (where n� is the number of cells in the vertical direction)
and Equation (45) can be written as

−pl−1 + 2pl − pl+1 = DRl
n2�

(46)

p1 is the pressure in the cell adjacent to the free surface and pn� is the pressure adjacent to
the bottom. At the free surface, the Dirichlet BC is applied by setting p0 = 0. At the bottom,
�p/��= 0, which is implemented as pn�+1 = pn� . Assembly of Equation (46) over the vertical
direction yields the following n� × n�, symmetric, tridiagonal form for A

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1

−1 2 −1

−1
. . .

. . .

. . . 2 −1

−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the eigenvalues of A are

�l = 4 sin2
(2l − 1)�

2(2n� + 1)
, l = 1 to n� (47)
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The previous free surface BC is only O(��) accurate. The O(��2) accurate BC is the Neumann
type with p0 =−p1, which yields the following form for A:

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −1

−1 2 −1

−1
. . .

. . .

. . . 2 −1

−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This matrix is more diagonally dominant in row 1 than the previous form and its eigenvalues are

�l = 4 sin2
(2l − 1)�

4n�
, l = 1 to n� (48)

Preconditioning A can also be used to accelerate convergence, which is accomplished by solving
the system

Ã−1Ap= Ã−1R (49)

instead of Equation (16). Ã is the preconditioner matrix and its selection is an active area of
research. In general, A−1A≈ I to accelerate convergence and Ã should be easy to invert for
computational efficiency. One simple choice is to select

Ã= diag(A) (50)

which is equivalent to dividing each equation by its diagonal term. Therefore, the modified matrix
Ã−1A consists of all 1’s on the diagonal and because of the weak diagonal dominance of A,
all off-diagonal terms of the modified matrix are less than 1. The �l ’s for the preconditioned
matrix have been numerically computed. Figure 3 shows the relative � for the Neumann BC and
the preconditioned Neumann BC, which have been normalized by � for the Dirichlet BC. This
figure illustrates that the preconditioned Neumann method reduces � by 35% for small n�, but the
reduction steadily decreases to less than 10% for n�>30.

Equation (40) may be used to compare the number of iterations needed by the CG method to
attain a given accuracy and therefore indicate the savings in computational effort. For example,
the following equation compares the required iterations for the Neumann BC (iN) to the Dirichlet
BC (iD):

iN
iD

= ln (
√

�D − 1)/(
√

�D + 1)

ln (
√

�N − 1)/(
√

�N + 1)
(51)

where �N and �D are the condition numbers for the Neumann and Dirichlet BCs, respectively.
The ratio iN/ iD is defined as the relative effort and is plotted in Figure 4, which shows that for
small n� the preconditioned Neumann BC requires about 78% of the iterations that the Dirichlet
BC needs to attain the same level of convergence. For n�>30 the relative effort grows to more
than 96%. Note that the trend in Figure 4 closely follows the trend in Figure 3 as expected from
Equation (51).
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Figure 3. Condition number, �, relative to the non-preconditioned Dirichlet
free surface BC as a function of n�.

Figure 4. Relative effort as a function of n�.
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The previous analysis revealed that the use of the Neumann BC yields a lower � because
this increases the p1 coefficient and therefore the diagonal dominance of row 1 of A. Locally
refining the grid at the free surface would further increase the diagonal dominance of row 1 and
should therefore lead to improved convergence. If ��0 = ��1 and ��n�+1 = ��n� , assembly of
Equation (45) yields the resulting non-symmetric form for A

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2/��21 + b1 −b1
a2 a2 + b2 −b2

−a3
. . .

. . .

. . . an�−1 + bn�−1 −bn�−1

−an� an�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where

al = 2

��l(��l + ��l−1)
(52)

bl = 2

��l(��l + ��l+1)
(53)

Figure 5 shows plots of the relative � (which have been normalized by � for a uniform grid) as
a function of n� for r = 1, 2 and 3. For the grids refined at the free surface, the reductions in

Figure 5. � relative to a uniform grid as a function of n� and r for grids refined at the bed and free
surface. Open symbols denote grids refined at the free surface while closed symbols denote grids refined

at the bed. The circles represent r = 1, squares r = 2, and triangles r = 3.
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Figure 6. � relative to a uniform grid as a function of n� and r for grids simultaneously refined at the
bed and free surface. The circles represent r = 1, squares r = 2, and triangles r = 3.

� are approximately 14% for r = 1, 36% for r = 2 and 52% for r = 3. Figure 5 shows the same
plots for the grid refined at the bottom. In these cases, � increases relative to a uniform grid and
for r = 1 the increase is almost 20%. For r = 2 the increase is roughly 90%, while for r = 3 the
relative increase grows with n� and is over 250% for n�>30. In these cases, A is non-symmetric
and therefore Equation (51) cannot be used to estimate the corresponding effect on computational
expense. However, the previous analysis of the CG method indicated that the trend in relative �
closely matched the trend in relative effort. If this relationship is true in the present case, then a
severe computational penalty would be expected when refining the grid at the bed, while a more
modest savings is expected when refining the grid at the free surface.

Turbulent flow exhibits sharp velocity gradients near the bed and is an obvious case where it
would be beneficial to refine the grid near the bed to reduce the local truncation error. One possible
way to avoid the computational penalty is to simultaneously refine the grid at the bed and free
surface. In other words, refine the grid at the bed and coarsen it upwards until f = S/2 at which
point the grid is refined again up to the free surface. Figure 6 shows the plots of the relative �
in this case and it is seen that it remains close to 1 regardless of r . However, for large n�, the
relative � does grow larger than 1, which indicates that refining the grid at the free surface does
not completely negate the adverse effects of refining the grid at the bottom.

SCALAR TRANSPORT

Some straightforward test problems are now solved to examine the effect of using a non-
uniform grid on computational effort and solution accuracy. The first problem is the advection of
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Figure 7. Comparison of scalar transport predictions of a smooth pulse at t = 75 s.

a conservative scalar in a 100m long channel. The initial concentration is given as

c(x, 0) = cos2
�(x − 15)

10
for 10m�x�20m (54)

The model was run for 75 s with a constant velocity equal to 1m/s. In this case, there is no
obvious reason to use a non-uniform grid so this test is presented to show the practical effects
of grid variability on an unsteady simulation. Figure 7 compares predictions with 200 cells and
�t = 0.25 s. The uniform grid prediction is the most accurate, followed by the grid refined with
the flow with r = 2. The grid coarsened with the flow (also with r = 2) is the least accurate, which
is expected since the grid is the coarsest at the location of comparison. Figure 7 confirms the
previous analysis in that the variable grid solutions are more dissipative than the uniform grid
solution, but possess similar phase accuracy. Figure 8 compares L2 errors as a function of 1/N ,
which is defined as

L2(c)=
√√√√ 1

N

N∑
j=1

(c − c j )2 (55)

where c is the exact solution and c j is the numerical prediction. Figure 8 shows that the uniform
grid converges at the expected rate of N−2, while the grid refined with the flow converges at a rate
of N−1.87 and the grid coarsened with the flow converges as N−1.83. Replacing the smooth initial
condition given by Equation (54) with a square pulse (c= 1) severely hinders the convergence of
the model regardless of the grid choice. Figure 9 compares the predictions and once again the
uniform grid is the most accurate, followed by the grid refined with the flow. Figure 10 compares
the L2 errors and in this case the model converges at a rate of N−0.4 regardless of the grid. The
discontinuities in this problem cause large errors to persist at the leading and trailing edges of the
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Figure 8. L2(c) as a function of 1/N for scalar transport of a smooth pulse.

Figure 9. Comparison of scalar transport predictions of a sharp pulse at t = 75 s.

pulse, which very slowly decrease with increasing grid resolution. This test shows that although
the variable grid predictions are less accurate than the uniform grid solution, the order of accuracy
(or convergence rate) of the model is only slightly reduced.
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Figure 10. L2(c) as a function of 1/N for scalar transport of a sharp pulse.

CHANNEL FLOW

The next test problem is steady, 2D, hydrostatic, turbulent flow in a 100m long by 1m wide
channel with a bottom slope equal to 0.001. In this case, the large velocity gradient near the bed
provides motivation for using a finer grid spacing to reduce the local truncation error in that region.
At the upstream boundary, a flow rate equal to 1m3/s is input while the downstream boundary is
open. The channel bed roughness is 0.022m and � = 1× 10−6 m2/s. Under these conditions, the
normal flow depth is approximately 1.26m and the depth averaged velocity, u = 0.77m/s.

The model was run for 200 s with 1500 timesteps, �x = 1m, and the k–	 turbulence model [21]
was used for closure. The results could be compared with semi-empirical models such as Coles’ Law
of the Wake, but this would confuse the analysis since the mathematical error of the turbulence
model is mixed with the truncation error of the discretization. In addition, the semi-analytical
expressions are not consistent with a zero shear stress free surface BC, which would cause a
fixed discrepancy at that location regardless of vertical grid resolution. Therefore, model pre-
dictions are compared with the ‘converged’ numerical solution obtained with a uniform grid
with n� = 64. Figure 11 compares predictions of u for n� = 8 with a uniform grid and the
grid refined near the bottom with varying r at 50m from the upstream end of the channel.
As expected, the solution computed with the greatest grid refinement is closest to the converged
solution.

Figure 12 compares the L2(u) errors of the predictions along with least squares regression lines
for varying r . The figure shows that the uniform grid predictions converge at a rate of n−0.46

� ,
which is consistent with the sharp pulse scalar transport case. However, for r = 1, 2 and 3, the
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Figure 11. Comparison turbulent channel flow velocity predictions at x = 50m
with n� = 8 and varying r .

Figure 12. L2(u) as a function of 1/n� and r for turbulent channel flow.
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Figure 13. Plot of n� needed by the non-uniform grid to match the L2(u)
error of the uniform grid prediction.

convergence rates are n−0.55
� , n−0.76

� and n−1.09
� , respectively. In this case, refining the grid in the

region with sharp velocity gradients greatly reduces the large local truncation error near the bed
while slightly increasing the smaller local truncation error near the free surface. This reduces the
global error and increases the convergence rate. For a given uniform grid n�, the regression lines
may be used to determine n� for the refined grid that yields the same amount of error. The results
are plotted in Figure 13, which shows that r = 1 yields a slight reduction in n�, but r = 3 yields
a much greater reduction. Indeed, results not presented here revealed that further increasing of
r yielded even faster convergence, so much so that the converged solution with n� = 64 was no
longer an appropriate benchmark. Furthermore, the vertical velocity at an impermeable bed is zero
so the Courant stability condition is never violated regardless of the vertical grid spacing. However,
if aggressive vertical grid refinement is used, then vertical diffusion must be implicitly integrated
to preserve numerical stability.

WAVE PROPAGATION

The channel flow simulation illustrates the effects of a non-uniform grid in the vertical direction,
but with a negligible vertical velocity. Now the model is used to simulate inviscid, non-hydrostatic,
wave propagation with a significant vertical velocity. However, in this case there are no strong
gradients of flow variables in the vertical direction, so the only reason to employ a variable vertical
grid is to reduce computational expense by refining the grid near the free surface. The channel is
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Figure 14. L2(h) as a function of 1/n� and r for wave propagation.

100m long, 1m wide, and at the inflow boundary, fifth order stream function wave theory [22] is
used to specify h, u and w, while the other boundary is open. The initial depth is 1m, the wave
period is 5 s and the height is 0.2m, which corresponds to a wavelength equal to 15.7m. The
model was run for 50 s with �t = 0.02 s and �x = 0.1m, which corresponds to 250 timesteps per
period and 157 cells per wavelength. Model predictions of h, u at the bottom (z = −1m), and w

at the surface (z = h) were compared to the analytical solution as a function of t at the middle of
the channel (x = 50m).

Figure 14 compares L2(h) as a function of 1/n� for a uniform vertical grid as well as surface
refined grids with r = 1, 2 and 3. In all cases, the errors decrease with increasing n� but at different
rates. For small n�, larger values of r yield greater error. This is expected because of the previous
analysis (Equations (29) and (32)) that showed the truncation error increases with grid stretching
(increasing r ). Also, unlike the previous case, there are no relatively large flow gradients near
the free surface as compared to the bottom. Therefore, refining the grid in that region does not
reduce the global truncation error. For larger n�, the differences become smaller, which was also
demonstrated by Equations (29) and (32). L2(u) at the bottom and L2(w) at the surface showed
similar trends and are therefore not presented.

Figure 15 compares the relative effort of the simulations as a function of r and n�. In this case,
relative effort is defined as the computational time required by the simulation normalized by the time
for the corresponding uniform grid simulation. This figure shows a modest computational savings
occurs when refining the grid near the surface. For n�>20, there is a reduction in computational
effort by about 10% for r = 2 and 15% for r = 3. Figure 15 also shows that there is a big
computational penalty for refining the grid near the bed. For n�>20, there is a 30% increase
in computational time for r = 2 and a 70% increase for r = 3. Also shown in Figure 15 is the
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Figure 15. Plot of computational effort as a function of n� and r for wave propagation. Open symbols
denote grids refined at the free surface while closed symbols denote grids refined at the bed. The circles
represent r = 2 and squares r = 3. The crosses represent the grid simultaneously refined at the bed and

free surface with r = 2.

relative effort when simultaneously refining the grid at the bed and free surface with r = 2. Using
r = 3 yielded nearly identical results and is therefore not presented. The figure shows that there
is virtually no difference in computational effort when compared to the uniform grid simulation
using the same n�. However, for a given n�, simultaneous refinement will not yield the same
resolution at the bed as bed grid refinement alone. Figure 16 shows plots of the required n� for
simultaneous refinement that yields the same grid spacing at the bed as bed refinement alone.
For r = 2 and n� = 10, simultaneous refinement requires approximately n� = 15, while using r = 3
requires n� = 23. However, Figure 15 shows that despite using a larger n�, there would still be a
15% computational savings for r = 2 and a 33% savings for r = 3.

Figure 15 shows that increasing the surface grid refinement increases the computational savings.
However, reducing the grid spacing at the surface must be done cautiously. Unlike the previous case
in which the velocity was zero at the location of greatest grid refinement, in this case the greatest
grid refinement occurs at the free surface where the vertical velocity is often the greatest. As the
grid spacing is reduced, the Courant number increases (for fixed �t) and may cause numerical
instability. In addition, the Von Neumann analysis showed that an increasing Courant number
reduces �a (increases numerical dissipation). Figure 17 shows plots of the ratio of the uniform grid
spacing to the minimum grid spacing as a function of n� and r . For r = 1 the ratio is approximately
1.2 for n�>5, while for r = 2 it is 1.8 and for r = 3 it is 3.3. Therefore, the maximum vertical
Courant number (assumed to occur at the free surface) for a uniform grid simulation will be more
than tripled when using r = 3 for large n�.
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Figure 16. Plot of the required n� when simultaneously refining the grid at the bed and surface that yields
the same grid size at the bed when refining the grid near the bed only.

Figure 17. Plot of the ratio of the uniform grid spacing, �zuniform, to the minimum grid
spacing, �zmin, as a function of n� and r .
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SUMMARY AND CONCLUSIONS

Refining the grid in regions of sharp flow gradients yields a more accurate solution than a uni-
form grid solution using the same number of cells. Alternatively, a variable grid model can
attain the same accuracy as a uniform grid model, but using fewer cells and therefore less com-
putational effort. In this paper it was shown by analysis and example that the hyperbolic sine
stretching function preserves second-order accuracy in the sense that the truncation error is pro-
portional to N−2. However, even the slightest grid stretch introduces a dissipative error and
stretching in the flow direction may introduce numerical instability. It was also shown that se-
lecting r � 2n� mitigates these problems, while the Von Neumann analysis showed little impact
of grid stretching on phase error. The smooth pulse scalar transport simulations confirmed these
results, while the sharp pulse simulations converged at a much slower rate regardless of the grid
uniformity.

It was also demonstrated that as n� increases, the condition number of the pressure
Poisson matrix grows rapidly regardless of the vertical discretization. This reduces the convergence
rate of the BCG method and therefore increases computational cost. The use of a Neumann free
surface BC and preconditioning the Poisson matrix reduces the required iterations for
convergence by 10–20% for n�<10, but the reduction is less than 5% for n� = 30. It was
shown that refining the grid near the free surface also reduces the condition number of the
pressure Poisson matrix. For r = 1, the reduction was approximately 15%, while for r = 3 it
was more than 50%. These reductions are substantial, but more importantly they remain even
for large n�. The wave propagation simulations confirmed this finding by showing that the
computational cost reductions grew with increasing n� and increasing r . However, overly ag-
gressive grid refinement at the free surface may cause a violation of the Courant stab-
ility condition and therefore must be done with caution if large surface velocities are
expected.

Refining the grid at the bed has the opposite effect and greatly increases the Poisson matrix
condition number and computational effort. However, it was shown that refining the grid at the
bottom greatly improves the accuracy of the model when simulating a turbulent current. For ex-
ample, the accuracy of a simulation using 30 uniform cells could be matched using r = 3 and
n� = 10. For hydrostatic flow, there is no Poisson equation to solve and therefore no computa-
tional penalty for refining the grid near the bed. Also, there is no concern about violating the
vertical Courant stability condition since the vertical velocity at the bed is zero. However, verti-
cal diffusion must be implicitly integrated to preserve model stability when using extreme grid
stretching. For non-hydrostatic flow, it was shown that simultaneously refining the grid at the
bed and free surface can provide the same near bed resolution as refining near the bed only,
and still yield a computational savings over the corresponding uniform grid simulation. Therefore
when simulating hydrostatic currents, it is recommended that near bed refinement only is used.
For non-hydrostatic flow, simultaneous near bed and near free surface grid refinement is recom-
mended. Stretching with r = 2–3 yielded good results, but the Courant condition must be closely
monitored.

Although the analysis was presented for a specific model that uses the BCG method to in-
vert the pressure Poisson matrix, the results should at least qualitatively apply to any fractional
step, non-hydrostatic model that uses an iterative matrix inversion method. For example, popu-
lar methods like Gauss–Seidel converge faster for matrices with a relatively smaller condition
number.
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APPENDIX A

The coefficients of the Poisson pressure equation, Equation (14), are

a1 = −s��( j−1/2,k,l)−(1−	l−1/2)s��( j,k,l−1/2), a2 = −s��( j,k−1/2,l)−(1−	l−1/2)s��( j,k,l−1/2)

a4 = s��( j,k+1/2,l) + (1 − 	l−1/2)s��( j,k,l−1/2), a5 = s��( j+1/2,k,l) + (1 − 	l−1/2)s��( j,k,l−1/2)

a6 = −s��( j−1/2,k) − s��( j,k−1/2), a8 = s��( j−1/2,k) + s��( j,k+1/2)

a12 = s��( j+1/2,k) + s��( j,k−1/2), a14 =−s��( j+1/2,k) − s��( j,k+1/2)

a15 = s��( j−1/2,k,l) + 	l+1/2s��( j,k,l+1/2), a16 = s��( j,k−1/2,l) + 	l+1/2s��( j,k,l+1/2)

a18 = −s��( j,k+1/2,l) − 	l+1/2s��( j,k,l+1/2), a19 =−s��( j+1/2,k,l) − 	l+1/2s��( j,k,l+1/2)

a3 = −(s��( j,k,l−1/2) + s��( j−1/2,k,l) − s��( j+1/2,k,l) + s��( j,k−1/2,l) − s��( j,k+1/2,l)) (A1)

a7 = −(s��( j−1/2,k)+s��( j,k−1/2)−s��( j,k+1/2)+	l−1/2s��( j,k,l−1/2)−(1−	l+1/2)s��( j,k,l+1/2))

a9 = −(s��( j,k−1/2)+s��( j−1/2,k)−s��( j+1/2,k)+	l−1/2s��( j,k,l−1/2)−(1−	l+1/2)s��( j,k,l+1/2))

a11 = −(s��( j,k+1/2)+s��( j+1/2,k)−s��( j−1/2,k)+(1−	l+1/2)s��( j,k,l+1/2)−	l−1/2s��( j,k,l−1/2))

a13 = −(s��( j+1/2,k)+s��( j,k+1/2)−s��( j,k−1/2)+(1−	l+1/2)s��( j,k,l+1/2)−	l−1/2s��( j,k,l−1/2))

a17 = −(s��( j,k,l+1/2) + s��( j+1/2,k,l) − s��( j−1/2,k,l) + s��( j,k+1/2,l) − s��( j,k−1/2,l))

a10 = s��( j−1/2,k) + s��( j+1/2,k) + s��( j,k−1/2) + s��( j,k+1/2) + s��( j,k,l−1/2) + s��( j,k,l+1/2)

where

s�� = D(�2x + �2y), s�� = D

4
(�x�x + �y�y), s�� = D(�2x + �2y)

s�� = D

2��t
(�x�x + �y�y), s�� = D

2��t
(�x�x + �y�y)

s��(l±1/2) = D

��l��l±1/2
(�2x + �2y + 1/D2)

(A2)

and ��t = ��l + (�l+1/2 + �l−1/2)/2, 	l−1/2 = ��l/(��l + ��l−1/2) and 	l+1/2 =
��l/(��l + ��l+1/2).
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APPENDIX B

The coefficients in Equation (22) are

C1 = −D j+1/2

2

C2 = 1 + D j+1/2 + D j−1/2

2

C3 = −D j−1/2

2

C4 = 1
2 [D j+1/2 − C j (1 − C j )
1]

C5 = 1 − C j − 1
2 {D j+1/2 + D j−1/2 + C j [(1 − C j )
2 − (1 − C j−1)
4]}

C6 =C j + 1
2 {D j−1/2 − C j [(1 − C j )
3 − (1 − C j−1)
5]}

C7 = C j

2
(1 − C j−1)
6

(B1)

D j+1/2 = ��t/(�x j�x j+1/2) and D j−1/2 = ��t/(�x j�x j−1/2) are the diffusion numbers and the

 coefficients result from the data reconstruction in Equation (19) and are defined as


1 = �x j−1/2�x j
�x j+1/2(�x j+1/2 + �x j−1/2)


2 = (�x j+1/2 − �x j−1/2)�x j
�x j+1/2�x j−1/2


3 = − �x j+1/2�x j
�x j−1/2(�x j+1/2 + �x j−1/2)


4 = �x j−3/2�x j−1

�x j−1/2(�x j−1/2 + �x j−3/2)


5 = (�x j−1/2 − �x j−3/2)�x j−1

�x j−1/2�x j−3/2


6 = − �x j−1/2�x j−1

�x j−3/2(�x j−1/2 + �x j−3/2)

(B2)
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